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Abstract. A set of generalised percolation probabilities P,, are defined for the dichromatic 
polynomial formulation of the Potts model. A generating function for these P,, is calculated 
at the self-dual temperature. P ,  and Pz are explicitly given and the behaviour of P,, is 
investigated. 

1. Introduction 

It is known that the two-dimensional q-state Potts model has a first-order transition 
for q > 4 at a self-dual temperature Td (Baxter 1973). For an anisotropic q-state Potts 
model on a square lattice the partition function Z is given by 

where U,, U], u h  are the neighbouring Potts spins, the ( 0 )  sum is over all horizontal 
edges of the lattice 2, the (ih) sum is over all vertical edges, and the outer sum is over 
the values 1 , .  . . , q of the spins. The self-dual temperature is determined by 

[eXp(J/kTd)- l][eXP(J’/kTd)-l] = 4. (2) 

Defining a local magnetisation as in equation (1 1) of Baxter (1982) (hereafter equations 
of that paper will be preceded by B), it was shown that for q > 4  there is a jump 
discontinuity in M (  T )  (Cardy et af 1980, Kim 1981, Baxter 1982). This was calculated 
by Baxter (1982) as 

cc. 

A M = M ( T d ) =  lim- M ( T ) =  n {l-exp[-(4j-2)8])/[1+exp(-4j8)] (3)  
T- T, / = I  

where q” ’= 2 cosh 8, 8 > 0, in the thermodynamic limit of 6 p  large. 

polynomial: 
Following Kasteleyn and Fortuin (1969), Baxter (1982) wrote 2 as a dichromatic 

2 = 1 qcv’wm (4) 
G 

where K = J/kT, L = J‘/kT, U = eK - 1 and w = e L  - 1. The dichromatic polynomial is 
a sum over all graphs G on the lattice 2‘: c is the number of connected clusters of G, 
I and m are the number of horizontal and vertical lines respectively. On these graphs 
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there are always a set of boundary sites that are linked to form a 'boundary cluster'. 
The central spin of lattice is known as site 0. Each graph of the sum is made up  of 
clusters of spins (including isolated spins as primitive clusters). Baxter defined a 
percolation probability P via (B3 1) that site 0 belongs to the boundary cluster (Kelland 
1976). This is a weighted sum over only graphs with that property. Baxter showed 
that this P is the same as the magnetisation M of the Potts model (B30) and (B31). 
He then used the six-vertex equivalence to the dichromatic polynomial (Baxter e f  a1 
1976) to express P in terms of the corner transfer matrices of the six-vertex model. 
This expression could be evaluated (in the thermodynamic limit) when the self-dual 
condition ( 2 )  is satisfied. He thus obtained the result (B2) for M (  Td). 

In recent work on other models (to be published), we have found the need to 
generalise P to the set of probabilities { P,, : n = 0, 1, . . . }  where the P,, are related to 
how 'deep' within the graph the cluster containing site 0 does lie. Here we calculate 
these P,, as coefficients of a generating function similar to (3). 

In the following 5 s  2-5  we consider the limit T +  T i .  In  this case the graphs G that 
contribute to (4) (in the thermodynamic limit) each contain an infinite cluster, so on 
finite lattices it is appropriate to impose the conditioc that all the boundary sites be 
linked. This 'boundary cluster' becomes the infinite cluster i.1 the thermodynamic limit. 
In  § 6 we extend the work to the limit T +  T: when there is no infinite (or boundary) 
cluster. 

2. Generalised percolation probabilities 

We define P, as the pro,,ability that the given site 0 belongs to a cluster whic,. is 
surrounded completely by just n clusters (one of them being the boundary cluc er). 
Po is then just the probability that no clusters surround site 0 and so site 0 must ue in 
the boundary cluster, giving P = P,,. We define the set of graphs G, as those having 
n clusters around the cluster of site 0. In figure 1 we show a typical graph of G2,  in  
which the site 0 is surrounded by two clusters (including the boundary cluster). 

Then P,, is given by 

( 5  1 p, = z-' 1 q'v'w>''' 
G, 

Isolated 
spin 

Boundary cluster 

S i te  0 

C lus te r  surrounding 
s i te  0 

Figure 1. A graph of type G2 where heavy lines are  the links of the graph and  the vertices 
are  sites of the Potts lattice. 
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where c, 1 and m are as defined before. From (4), the sum of Po, P,, . . . , must be one, 
and hence the P, are properly normalised probabilities. 

We now generalise the method of Baxter (1982) so that we can calculate a generating 
function for the P,.  That method converted the dichromatic polynomial problem to 
a six-vertex model via the known method (Baxter et al 1976) of placing arrows on the 
edges of an associated medial lattice Y' (see figure 1 of Baxter (1982) ) .  A device of 
Kelland (1975) was used to express the percolation probability in terms of this six-vertex 
model. It was shown that the expectation values of a function s ( a )  defined on an  
'arrow spin' set { a , ,  . , , a,} that lay on a row E of edges from site 0 to the boundary 
site gives P as 

p = ( s ( a ) )  (6) 

where ( s ( a ) )  is given by (B39)  and s ( 0 )  by (B38) .  We now generalise s ( a )  to s ( a ,  4) 
by 

~ ( a , 4 ) = e x p [ - 4 ( a , + . .  .+a,-,)] ~ E C .  ( 7 )  

We shall now argue that the expectation value of s (a ,  4)  gives a generating function 
for the P,. 

As in Baxter (1982) we use the result that the dichromatic polynomial can be written 
as a sum over polygon decompositions of 2'. The six-vertex arrows follow each other 
around these polygons. A weight e@ is given to a set of anticlockwise arrows on each 
polygon and  a weight e-' for a clockwise set. We write the expectation value of s (a ,  4 )  
as 

where AC refers to arrow configurations and  the product is over all sites of 2'. We 
convert this sum to one over polygon decompositions of 2". There is a one-to-one 
correspondence between polygon decompositions of 2" and cluster graphs G on 2 
(Baxter er a1 1976). We therefore can split this sum into a series of sums over the 
polygon decompositions of each of the G,. We now examine these sums separately. 

Each cluster of G is surrounded by a polygon, and so is each circuit of G. Here 
we shall ignore the polygon surrounding the outside of the boundary cluster B :  thus 
all polygons lie inside B. When site 0 is connected to B there is no  polygon surrounding 
it. We can think of a circuit as a 'hole' surrounded by a cluster. Thus each polygon 
is either external or internal to just one cluster. 

If one cluster surrounds site 0 the cluster will be B. Therefore two polygons will 
surround site 0: one of them external to the cluster containing 0, the other internal to B. 

Considering more and more clusters surrounding site 0, one sees that each will 
contribute two polygons around site 0 as each cluster has its own inner and outer 
boundary. Generally for the cluster graphs containing n clusters surrounding site 0 
there will be 2 n  polygons around site 0. 

In addition to the weights e@(e-') for an anticlockwise (clockwise) arrow covering, 
each polygon P acquires a weight e-4(e') for a right-pointing (left-pointing) arrow 
on an edge of the set E. I f  P does not surround 0, it must cross E an equal number 
of times in each direction, so the total extra weight is unity. 

If it does surround 0, there will be a net gain of just one extra edge weight factor. 
Summing over both the allowed arrow configurations for each polygon, it follows that 
a polygon that does not surround 0 has a total weight e' + e-e = 2 cosh 0, as before. 
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However, if it does surround 0, its weight becomes e'-' +e-'+" = 2 cosh( 0 - 4). Thus 
each polygon surrounding 0 acquires an extra factor cosh( 8 - +)/cosh 8. Since each 
cluster surrounding 0 is associated with two such polygons, the numerator in (8) is 
the dichromatic polynomial (4), but with an  extra factor z = cosh2( 0 - +)/cosh2 8 for 
each cluster surrounding 0. From ( 5 )  it immediately follows that 

( m - 1  J / 2  

S,(z)= 1 Z"P,. 
n = O  

3. Calculation of the generating function 

Baxter used corner transfer matrices to evaluate his ( s ( a ) ) .  We can d o  the same for 
( s ( a ,  4 ) )  by simply replacing Baxter's 8+i7;/2 by 4 in (B45) .  We then obtain 

S,(z) = T r  S(AB)'/Tr (AB)' (11) 
where A and B are the same matrices defined in Baxter (1982). Provided the self-dual 
condition (2) is satisfied, the same arguments as in § 6 of Baxter (1982) yield 
(analogously to (B59)) 

where 

and 
1 7 - 2  

h ( a ) = -  C j a , a , + , + ( r n - l ) a m - l  (12c) 
, = I  

and the summation is over all values (1-1 and -1, or simply + and -) of the arrow 
spin set { a I , .  . . , a,,-l} = { a } .  (We have discarded the a ,  dependence (B58), since 
this comes simply from the outer polygon of B and cancels out of (12).) 

In the thermodynamic limit we have 

S ( z ) =  lim S,(z)= l i m ( s ( a , 4 ) ) =  1 z " ~ , , .  
n =O m-oc m - w  

We will now calculate S ( z )  and hence the generating function for P,,. Firstly let 
us define 
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then it can be shown that 

S(z)= lim R m - l ( - , x , y ) / R m - l ( - ,  x, +). 
m - m  

Rm-l(  a,, x, y )  satisfies the following recurrence relations: 

and  

Solving these 

where 

Ro(+, x, Y )  = Ro(-, x, Y )  = 1 .  

recurrence relations lead us to 

is the Gaussian coefficient defined (Andrews 1976, p 3 5 )  as 

= O  otherwise. 

Therefore S ( t )  is given by 

Let t = y / x  = exp(28 -24 ) ,  then the relationship 

may be used to obtain 

(From now on we take Q = x2 = e-48.) 
Let m - 1 = 2 p  and j - p  = k (remembering that m is odd)  so 

Now since 0 < x < 1 then 

I Q 1  < 1 and Q k 2  + 0 as k + fa. 
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So these sums converge and we may use the Jacobi triple product (Goulden and 
Jackson 1983, Andrews 1976) and the result that for IQ1 < 1 

S 

= n (1 - Q k ) - '  
Q k = l  

to give 
3i 

S ( z ) =  n [ l+Q2 ' - ' ( t+  t - ' ) + Q 4 ~ ' - 2 ] [ 1 + Q ' J - ' ( ~ + ~ - 1 ) + Q 4 / - 2 ] - 1 .  (26) 
, = I  

Now as t + t - '  = qz -2 = exp[2( 8 - 4)] + exp[ -2( 8 - 4)] we have 

{1+exp[-(8j-4)8](4zcosh2 8-2)+exp[-(16j-8)8]} 
(1 +exp[-(8j -4)8](ezo +e-")+exp[-( 16j -8)8]} 

S ( z )  = n . (27) 

This equation is the result analogous to equation (3) we have sought. From it we can 
obtain Po, PI,  P 2 ,  . . . , by expanding and using (13). In particular, noting that M (  Td) = 
P = S(O), we can readily verify (3).  

4. Explicit formulae 

We can rewrite S ( z )  in terms of Jacobi theta functions (Abramowitz and Stegun 1965, 
Gradshteyn and Ryzhik 1980) as 

where U is defined via z(u)=2[cos( . r ru/K)+l] /q  and u by z ( u ) =  1. The nome is 
Q = e-48 and K is the quarter period. By performing a conjugate modulus transforma- 
tion on S (z )  it can be shown that 

(29a) S(  z )  = exp[ -( r2/ 168 I (  U /  K ) 2  - 8/4]@, ( i u  )/01 ( i u )  

which has the product expansion 

S ( Z )  = e ~ p [ - ( a ~ / 1 6 8 ) ( u / K ) ~ -  6/41 

{1+2 exp[-(2j- 1 ) r 2 / 4 8 ]  c o s h ( ~ ~ u / 4 K 8 ) + e x p [ - ( 4 j - 2 ) ~ ~ / 4 8 ] }  
{ I  +exp[-(4j-2).rr2/48]} x n  

, = I  

(296) 

The nome and quarter period of the theta functions in (29a) are Q'and K', respectively: 
the conjugate nome and quarter period. They are related to Q and K by 

Q' = exp( - .rrz/48) = exp( - .rrK / K ') Q = exp(-48) = exp(-.rrK'/K) (30a) 

and so 

K' /  K = 4e/  .rr. 

One can calculate P n ( 8 )  via the rule 
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In  particular Po = P = M (  Td) is given by (3) and  PI,  Pz by 

and 

5. Behaviour of P,(B) 

5.1. Large 0 behaviour 

Baxter (1982) showed that Po( 0)  approaches 1 as 0 approaches 00. By examining (27) 
one can see the leading behaviour of the coefficients of Z" (which are the P,( 0 ) ) .  P,,( 0 )  
behaves as exp[-2n(2n - l ) 0 ]  as 0 becomes large. This is consistent with equations 
(32) and (33) where Pl(0)  behaves as e-" and P 2 ( 0 )  as e-''@ as 0 becomes large. So 
P,( 0)(n 2 1) goes to zero as 0 goes to infinity. This is expected as the sum of the 
P n ( 0 )  must be 1. 

5.2. Small 0 behaviour 

Baxter (1982) also showed that Po( 0 )  tends to zero as 2 exp( -T ' /  160) as 0 approaches 
zero. By examining (29) and making series expansions of the terms one can see that 
for 0 small and O <  z < 1, 

S(z) - 2 exp[-( r2+ ~ ' ) / 1 6 0 ]  c o s h ( ~ ~ / 8 0 )  (34) 

where z = sin2(e/2).  Expanding in powers of z, it follows that for a given value of n 
( n z 0 )  

P,, - 2 ( ~ / 4 0 ) ' "  exp(-.rr2/160)/(2n)! (35) 
as 0 + 0 .  Thus each P, tends to zero. (To verify that their sum remains unity one 
needs to consider the limit when 0 + 0  and n +CO, n0 remaining finite, for which the 
formula (35) does not apply: alternatively, and more easily, one can simply verify that 
(34) gives S (  1) = 1 when z = 1 and E = T.) 

6. The case T +  T i  

Now let us consider the case T +  Td+. As remarked at the end of § 1, there is no longer 
an infinite cluster, so it is no longer appropriate to say that the centre site 0 is connected 
to the infinite (or boundary) cluster. 

However, one can still ask how many finite clusters surround the cluster containing 
site 0. We can break up  the graphs G' on the lattice into a series GI, G;, . . , , defined 
as follows: GL is the set of graphs where just n - 1  clusters surround the cluster 
containing site 0. Any graph G' must be in one of the set GL, n = 1 ,2 , .  . . . We can 
define therefore Pi ,  P i , .  . . , as the probabilities that G'E GL. If G'E GL then on the 
medial lattice 9' there are 2n - 1 polygons surrounding site 0. We proceed in a similar 
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way to that of § §  2 and 3 to calculate a generating function for these PL. Equation 
(9) becomes 

n = l  

We still have 

lim (s’(a,  4)) = lim S , ( z )  (37) 
m-oc m-oc 

where S,(z) is defined by (12), only now the boundary condition requires us to take 
the limit through even values of m. Using the result (23), but taking m = 2p + 2, in 
place of (24) we obtain 

Taking the limit term by term, it follows that 

S’ (z )  = z”’ 
) - I  

X 

Q‘k-1’2)’ cosh[2( k - 1/2)( 0 - 4)] ( 5 Qik-”*”  cosh[2(k - l / 2 )0 ]  . 

(39) 
This expression is directly related to the ratio of two HI theta functions and by using 
their product expansion we obtain the analogous result to (27) as 

k = l  k = l  

[ 1 + exp( -8je)(4z cosh’ 0 - 2)  + exp( - 16jO)l 
S ’ ( z )  = z JJ 

,=] [ l  + e ~ p ( - 8 j O ) ( e * ~ + e - ~ ~ ) + e x p ( - 1 6 j B ) ]  ’ 

From (40) we can calculate the PL( e).  We see that as B approaches infinity, PL( e)  
approaches exp[ -(4n - 2)( n - 1 )e] and in particular pkl( e)  + 1. 

7. Summary 

In 99 2-5 we have calculated the generalised percolation probabilities P,( 6 )  for e > 0 
( q  > 4) in the thermodynamic limit, and for T +  Ti.  They are given, via the generating 
function S ( z ) ,  by (13) and  (27). In  !+ 6 we give the corresponding results (equations 
(38) and (40)) for the limit T +  Td+. In  both cases P,( e )  and P L ( 0 )  are the probabilities 
that a centre site is surrounded by n - 1 finite clusters. 
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